08:30 PM - 09:30 PM

395 Highly-Efficient and Magnetically-Sepa-rable ZnO/Co@N-CNTs Catalyst for

434 Virus removal from water by adsorption on cationic lignin nanoparticles Guillaume RIVIERE

Upgrading Lignin and Its Derived Species Jaehoon KIM

Green Sustainable

Perspectives Mohamed MOSTAFA

Alginate gels as hete-rogeneous supports for the non covalent

immobilization of chi-

ral organocatalysts Nathalie TANCHOUX

PL-5 (Auditorium

Advanced enzyme engineering concepts to create biocatalysis suitable for stereoselective synthesis of chiral intermediates and for carbohydrate conversion.

e BORNSCHEUER, INSTITUTE OF BIOCHEMISTRY, GREIFSWALD UNIVERSITY

		Uwe BORN	NSCHEUER, INSTITUTE OF BIOCH	EMISTRY, GREIFSWALD UNIVER	RSITY		
09:30 AM - 10:30 AM							
OC	-6-1-1 (Auditorium)	OC-6-1-2 (Room 1)	OC-6-2-1 (Room 6)	OC-6-2-2 (Room 3)	OC-6-4 (Room 2	2) OC-6-6 (Room 5)	
167	Technical grass lignins engineering with ionic liquids as a method for improving antioxidant activity Betty COTTYN Which role for hydrogen transfer in organosolv pulping? Francesco DI RENZO NaOtBu-Promoted Aerobic Oxidative	90 Application of humins from sugar dehydration processes llona VAN ZANDVOORT 174 BIOSOURCED GREEN/BLUE SURFACTANTS: TOWARDS NEW FUNCTIONALITY IN FORMULATION Louise RENAULT 232 In Silico Design of	dration of glycerol to allyl alcohol with 2-hexanol as H-donor - a detailed study of the reaction mechanism Karen SILVA 403 Selective TEM- PO-oxidation of alco- hols to aldehydes in alternative solvents Alessa HINZMANN	49 Heteropolyacid based catalysts for the production of dimethyl ether from methanol. Effects of reaction pressure and nature of the support Dalia LIUZZI 289 Pickering emulsions as compartmentalized reaction media for catalysis Carolien VIS	Elaboration of 0 ted Chitosan B for the Remova Endocrine Disri Chemicals (EDI from Drinking V Pascale CHAMPAGNE 528 Use of natural f as reinforceme the production based matrix c site plastic mat	ting H2O2-mediated cis-cyclooctene epoxidation mechanism Tony COUSIN 572 Sonophotochemical activation: Which opportunities for the selective oxidation of alcohols? Marion CHEVALLIER	
	Degradtion of Lignin Model Compounds to High-Value Aromatics LEE TAE WOO	Sugar-based Sur- factants Guillaume FAYET	498 Hydroxylation of 1.4-dichlorobenzene to produce 2,5-di- chlorophenol over Fe/activated carbon	299 Thermoreversible aqueous biphasic system as integrated biocatalytic processes ANA M. FERREIRA	(Bio-polyethyle Quim TARRÉS 972 Itaconic acid as renewable buil	cellulose nanocrys- tals by non thermal s plasma in liquid-gas Iding media	
377	Glycerol carbonates as an innovative alkylating agents for phenolics Tommaso TABANELLI	245 Rh-catalysed hy- drogenation of amino acids to bio-based amino alcohols: tackling challen- ging substrates and application to protein hydrolysates Annelies VANDEKERKHOVE	571 TiO2 nanoparticles supported on polydopamine-coated	696 Cyclodextrin-assisted low-metal Ni-Pd/ Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols Marc PERA-TITUS	block for uv-cu polyesters Tobias ROBERT 1150 Microencapsul	aring Elodie FOURRÉ T 604 Enhancement of aerobic oxidation of aldehydes using ultrasonic irradiation Claire BESNARD	
00	:-6-8 (Room 4)		11:00 AM - 11:30 A	M			
	7 0 0 (NOOM 47						
307	Review of Nitrogen Oxides (NOx) Removal	492 Water based recy- cling of molecular	KN-3-1 (Room 3)	KN-3-2 (R	oom 5)	KN-3-3 (Room 1)	
489	Techniques in Industrial Flue Gas Alexis METAIS DEASYL, solutions for a fuel environmentally		eco-friendly break solution for the ext industry. From an id an industrial reality Norbert PATOUILL	through selective traction Carmen dea to	catalysis	1114 Selective Homoge- neous Hydrogenation towards Sandalwood Odorants Synthesis Philippe DUPAU	
	friendly Irene MALPÀRTIDA	Chemical Hazard	KN-3-4 (Room 4)	KN-3-5 (A	uditorium)	KN-3-6 (Room 2)	
	GARCIA	David J. CHICHESTER- CONSTABLE	to be confirmed C. GALLARDO	1144 Sustainabi Green Che M. PHILIPF	mistry	1142 Bio-butadiene manufacture from butandiols Marc JACQUIN	
11	30 AM - 12:30 PM						
OC	-7-1 (Auditorium)	OC-7-2 (Room 2)	OC-7-4 (Room 3)	OC-7-6 (Room 4)	OC-7-9 (Room	1 5) OC-7-11 (Room 6)	
329 374	Insights on the mechanisms of biomass delignification mediated by deep eutectic solvents using lignin model compounds André M. DA COSTA LOPES Valorization of native sugarcane bagasse	 Combining fatty acids and oligosaccharides by click chemistry for the design of biobased amphiphiles Henri CRAMAIL Fatty acids as a source of original aliphatic polycarbonate materials Etienne GRAU 	Chitosan Polymers and Modifying En- zymes by Enzymatic Mass Spectrometric Fingerprinting Anna NIEHUES	 Tunable Fe-based nanoparticles heating properties for magnetically induced sustainable catalysis Julien MARBAIX Routes to Greener Silicone Surfactants Adrien LUSTERIO Antibacterial 	290 Environmental fits of the greer mistry based d of Pro-Xylane Patricia MARTZ 459 Looking for sus nable transform tions of bio-base feedstock, a LC case: hydroger of glucose to significant fits for the fits of the case.	n-che- lesign Z Microplastics by Pacific Oyster Larvae and effects on embryo-larval development and swimming behavior. Arno BRINGER CA 603 Chemistry and Systems Thinking	
205	lignin to bio-aromatic esters/monomers via one pot oxidation-hy- drogenation process TANA TANA	525 Mesoporous Nano-sized CuO/ MgAlOx Catalysts for Enantioselective Henry Reactions: Green Sustainable	252 Control of the surface properties of cellulose nanocrystals by acylation in	Intelligent Amphiphiles Antoine FRANCHE 558 Surface hardness and	Jovita MOREN(482 Life Cycle Assement of Ni-Codroxide and regraphene oxide electrodes	O CONSTABLE ess- hy- duced Chemistry Education	

Flow electrochemical methods as tools for mainstreaming green

tals by acylation in

water medium Gilles SEBE

and sustainable

chemistry Irene ERDELMEIER

by thermal poling Evelyne FARGIN

durability reinforce-ment of silicate glass

02:00 PM - 03:00 PM

Chemistry Education
David J.
CHICHESTERCONSTABLE

Sklodowska Curie

Actions: opportuni-ties for postdoc, phD

training networks & research networks Jean-Marie PINCEMIN

H2020 Marie

droxide and reduced graphene oxide electrodes Guido SONNEMANN

582 G2 - Greenness Grid 914

to rank chemical pro-

ducts and processes Telma BARROSO

OC	-8-1-1 (Auditorium)	OC-8-1-2 (Room 1)	OC-8-2 (Room 3)	OC-8-3 (Room 4)	OC-8-5 (Room 5)	OC-8-7 (Room 6)
388 655 660	Dawn Technology Biorefinery: 'Pure' glucose and lignin from 2nd generation feedstocks Annelie JONGERIUS New insights into the molecular structure of kraft lignins and an IR-based method for rapid lignin structure characterization Pieter BRUIJNINCX On the use of unconventional methods for the catalytic oxidative cleavage of lignin by dioxygen Louay AL HUSSAINI Lignin-derived Propyl- phenols to Phenol and Propylene over Acidic Zeolites: Activity, Se- lectivity, and Stability Yuhe LIAO	carbon catalyst supports: the future of green and sustainable ethylene glycol direct production from cellulose Lucilia RIBEIRO 177 Fractionated catalytic oxidation of lignocellulose to formic acid and cellulose in one reactor setup Jakob ALBERT 237 Catalytic biorefining in butanol/water Tom RENDERS 452 Design of innovative nanocomposite materials by spray-freeze drying process: efficient catalysts and photocatalysts preparations Stefania ALBONETTI	12 Photocatalytic degradation of organic matter with doped ZnO/hydroxyapatite nanoparticles Karim TANJI 77 Coupling polymetallic bio-based catalysis and woody species: an original innovation paradigm for green acetalisation and oxidative esterification Claude GRISON 85 Direct transformation of fructose into FDCA mediated by metal-functionalized acid resins as bifunctional catalysts Jose IGLESIAS 135 Sonocatalytic Oxidation of EDTA using Noble Metal-Free Catalyst Tony CHAVE	Acidogenic fermentation of coffee wastes as a step of a bioplastic production process Luisa SEUANES SERAFIM 387 A SUPERIOR ANTIOXIDANT MATERIAL FROM SPENT COFFEE GROUNDS FOR APPLICATION IN ACTIVE PACKAGING, FOOD SUPPLEMENTATION AND ANTIBACTERIAL DEVICES Lucia PANZELLA 390 FERMENTATION AS A VALUABLE TOOL FOR FACILE ACCESS TO BIOACTIVES FROM AGRO-FOOD WASTES Alessandra NAPOLITANO 427 Silicone structurants for soybean oil: foams, elastomers, and candles Cody GALE	165 Hydrophobic natural deep eutectic solvents as efficient solvents to recover astaxanthin from brown crab shell residues Liliana A. RODRIGUES 385 Sustainable Hydrophobic Terpene-Terpene Eutectic Mixtures Mónia A. R. MARTINS 473 SUPRADES: new generation of solvent based on supramolecular entities Sophie FOURMENTIN 680 Deep eutectic solvent to decrease the cost of CO2 capture processes Jean-Michel ANDANSON	80 Electrochemical properties of some ionic liquids Ibrahim BOU MALHAM 460 The New Development Green Chemical Production Technology of Sinopec Baoning ZONG 546 Hydrogen peroxide as a green reagent in organic synthesis Alexander TERENTEV 643 Electrochemical and Decentralized Production of Hydrogen Peroxide Dusan BOSKOVIC
03	:00 PM - 04:00 PM					
00	-9-1-1 (Auditorium)	OC-9-1-2 (Room 2)	OC-9-2 (Room 1)	OC-9-3 (Room 3)	OC-9-5 (Room 5)	OC-9-6 (Room 6)
338 350 633	Sucrose bioconversion in linear and branched a-glucans by discovery and engineering of bacterial a-transglucosylases Claire MOULIS Sustainable Cellulose Solubilization, Regeneration and Derivatization in a DBU-CO2 Switchable Solvent System KELECHUKWU ONWUKAMIKE Starch oxidation by hydrogen peroxide in the presence of an iron catalyst complex: process intensification and mathematical modelling Pasi TOLVANEN Preparation of end-functional oligosaccharides to develop novel bio-sourced amphiphiles Léa SPITZER	28 Degradation and in-situ extraction of furfural during the reaction from xylose Carin DIETZ 37 Furfural aldolisation by acetone over magnesium hydroxide fluorides as promising basic catalysts, towards the valorization of hemicellulose to biofuels Minrui XU 130 Algal remnant transformation to 5-HMF under biphasic solvent conditions: The solvent selection supported by predictive computational methods Liisa RIHKO-STRUC-KMANN 261 Applications of CO2/H2O system in the bio-based platform molecules conversion Fei LIU	35 Catalyst-membrane synergy as a means of improving process intensity of membrane assisted catalysis Dominic ORMEROD 51 Chelating magnetic mesoporous silica materials for metallic micropollutants removal Paula DUENAS RAMIREZ 175 Catalytic CO2 valorization to cyclic carbonates using nitrogen Schiff Base zinc complexes Lorraine CHRIST 313 E-waste Recycling: Development of Integrated Process for Metal Recovery and Energy Production PRASHANT JADHAO	83 Micellar catalysis using recovered metals Valentin LACANAU 208 Direct fermentation of food waste in continuous flow culture Jan Christoph PEINEMANN 588 Hospital wastewater treatment using actinomycetes to eliminate multi-resistant bacteria Laurent LEMEE 652 Renewable Aromatics from Waste Water by Catalytic Aromatization of Volatile Fatty Acids Pieter BRUIJNINCX	336 DES as versatile solvents for continuous flow enzymatic kinetic resolution of rac-menthol Rita CRAVEIRO 429 Carotenoids recovery from brown macroalgae using surface-active solvents Sónia VENTURA 468 Recovering violacein from Yarrowia lipolytica cells using alternative solvents Mariam KHOLANY 648 New process for organic carbonate synthesis with ionic liquid as solvent and dehydrating agent Matgorzata E. ZAKRZEWSKA	 Carbon nanotube containing polyacrylonitrile materials for the oxygen evolution reaction - influence of active sites, hydrophilicity and conductivity Anna Katharina BEINE Synthetic rhamnolipids an alternative for crop protection. Synthesis and biological evaluation against different pathosystems Patrick MARTIN An overview on the downstream processes applied in the microalgae deconstruction Sónia VENTURA Providing CO2 as a C1 building block by chemical absorption: lonic liquid-based CO2 separation technology Johannes SCHÄFFER

04:30 PM - 05:30 PM					
OC-10-1-1 (Auditorium)	OC-10-1-2 (Room 2)	OC-10-2 (Room 1)	OC-10-3 (Room 3)	OC-10-9 (Room 5)	OC-10-10 (Room 6)
New strategies towards fine chemicals from HMF and GMF Yves QUENEAU 228 PRODUCTION OF	187 Tailor-made biocatalysts from environmental samples discovered through functional metaproteomics Lars I LEICHERT	56 Selective transfor- mations of cellulose derived compounds catalyzed by hete- rogeneous materials DOMINE Marcelo E.	359 Catalytic Hydroge- nation of CO2 to Formate by Immobi- lized Ruthenium on Phosphine Catalysts Anna KANN	78 Nature, Ecology and Chemistry: an unu- sual combination as a Green'up driver Claude GRISON	122 Direct CO2 capture from air - What is the best sorbent? Nazila MASOUD
2,5-FURANDICAR- BOXYLIC ACID FROM FRUCTOSE - A SIMPLE AND HIGH SELECTIVE PROCESS Sarah TSCHIRNER 318 Reductive catalytic	356 «Touching» chemistry-selective amination of alcohols to primary amines by ammonia Vitaly ORDOMSKY	276 Development of conductive covalent triazine frameworks: novel metal-free electrodes for the electrocatalytic reduction of CO2	421 TWO-STEP APPROACH FOR PLASTIC WASTE VALORIZATION TO FUEL RANGE LIQUID HYDROCARBONS Uma DWIVEDI	217 Calyxia microcapsule technology: enabling a future of safer laundry productsand cleaner oceans. Jamie WALTERS 251 Life cycle assess-	extraction of Co/Ni with undiluted ionic liquids in milliflow systems Joren VAN STEE
fractionation of tree bark: a source of phe- nolics and alfa.ome- ga-bifunctional, long-chain alkanes Thijs VANGEEL	381 Evolved thermos- table Transketolase for the valorization of vegetable oils Hubert CASAJUS	Karen LEUS 386 Tailored Hydrogen Generation from Borohydride in Ionic Liquids Elisabeth	614 Aqueous-phase Fischer-Tropsch synthesis over rhodium catalysts for simultaneous syn- thesis and separation	ment of magnetically induced catalysis for power to gas Julien MARBAIX 503 Life cycle assessment for the	of non-aqueous li- quid-liquid extraction systems by addition of hydrophilic ionic liquids as second ex- tractant to the more polar phase
443 SETTING THE SCENE FOR THE CONTI- NUOUS FLOW HMF OXIDATION: Au/ Pd-DECORATED ELECTROSPUN MEMBRANES AS CATALYTIC SYSTEMS FOR FDCA PRODUC- TION Stefania ALBONETTI	590 A novel dynamic kinetic resolution sys- tem for production of enantiopure aliphatic amines. Koen ADRIAENSEN	KLINDTWORTH 627 Influence of the Cuparticle size and oxidation state on the activity and selectivity of CuxO/ZnO catalysts in HMF hydrodeoxygenation reaction Magdalena BRZEZINSKA	of hydrocarbons and oxygenates Aleksandra PEREGUDOVA 690 Biohydrogen from waste wood hemicel- lulose hydrolysate Atte AHO	bioconversion of organic waste into valuable biomaterials for agricultural uses Roberto ROSA	Zheng LI 372 Thermal stability analysis of two imidazolium nitrate ionic liquids via STA, DSC, and ARC Shang-Hao LIU
05:30 PM - 06:30 PM	l				
OC-11-1-1 (Auditorium)	OC-11-1-2 (Room 2)	OC-11-2 (Room 1)	OC-11-3 (Room 3)	OC-11-4 (Room 4)	OC-11-5 (Room 5)
9 Ionothermal carbonization: an opportunity for the valorization of raw lignocellulosic agrowastes Nicolas BRUN 192 Kinetics of biobased bitumen synthesis from microalgae biomass by hydrothermal liquefaction Antoine ROLLAND 239 «Millisecond» reactor for green chemistry Hugo CRUCHADE 297 Effect of copper loading and CO2/CO ratio for the production of methanol over Cu/ZnO/Al2O3 catalysts from biomass-derived syngas Cristina PEINADO	354 Continuous hydrodeoxygenation of liquid phase pyrolysis oil together with oil refinery intermediates Daniela PAINER 360 Effect of clays structure on the catalytic fast pyrolysis of biomass Roger GADIOU 802 Synthesis of fully-substituted pyridin-2(1H)-one in a highly chemoselective approach utilize multicomponent reaction (MCRs) strategy Hitendra M. PATEL 584 Validating alternative technological pathways of bio-oil refinery integration: co-hydrotreatment Panagiota MANARA	469 Heterogeneously catalysed conversion of glucose to glucaric acid Chrysoula MICHAILOF 499 Supported nickel nitride catalysts for the gas-phase hydrogenation of furfural Pedro MAIRELES-TORRE 560 Rational Design of Lewis Superacids for the Direct Amination of Alcohols Pierre-Adrien PAYARD 615 In-situ generation of Brönsted acidity in the Pd-I bifunctional catalysts for selective reductive etherification of carbonyl compounds at mild conditions Dan WU	134 Valorization of lignocellulosic biomass by green composites with humins matrix Anna SANGREGORIO 189 Wood modification by a new biobased treatment based on humins resin Anna SANGREGORIO 365 Physiochemical Analysis of Lignocellulosic Biomass; Cannabis indica, in the Context of Biorefinery Falguni PATTNAIK 392 The humins: from side-stream product to auto-crosslinked rigid foams and added value materials Pierluigi TOSI	330 Biofungicides based on curcumin derivatives and chitosan coatings inhibit my-cotoxin production by Fusarium pathogens Anne LORON 345 Use of fatty acid starch ester as hydrophobizing agent in extruded thermoplastic starch material Nicolas JOLY 382 Development of Nanocomposite Materials Based on Chitosan and Cellulose as Edible Packaging. Mekro Permana PINEM 425 Quercetin: a natural crosslinker and chain-extender for antioxidant silicone polymers and elastomers Cody GALE	42 The effect of the ionic liquid cation on the DNA stability and purification using aqueous biphasic systems Teresa B. V. DINIS 247 Production of protein nanofibers using alternative solvents for the design of innovative functional materials Nuno SILVA 644 Green technologies for design of drug delivery systems for tuberculosis treatment Filipa SANTOS 649 Hydrophobic Deep Eutectic Solvents: an efficient approach for water treatment Isabel MARRUCHO
OC-11-7 (Room 6)					
69 Production of formate from CO2 gas: towards flow through enzymatic reactors Nicolas BRUN	601 Catalytic hollow spheres as vessels for Cross-Linked Enzyme Aggregates - Paving the way to efficient chemo-enzymatic reactions DEBECKER Damien				
lective transamination using transaminase enzymes immobilized in a macroporous silica monolith Damien DEBECKER	607 Flavors and fra- grances produced from the biocatalytic oxidation of -pinene Sabina ION				

06:30 PM - 08:00 PM

POSTER SESSIONS

SCIENTIFIC PROGRAM Thursday, May 16th

