PL-3 (Auditorium) 08:30 AM - 09:30 AM

Green Chemistry at Bayer: Vision and Examples from a chemist's perspective Niklas VON DER ASSEN & Julien Egger, BAYER AG

02:00 PM - 03:00 PM

1

		S VON DER ASSEN & Julien Egger, e				02:00 PM - 03:00 PM		Schemes towards Platform (NIETTI, MPI-KGF	unemicals: neterogeneous (organocalalysis and hyperp	olar solvent media
09:30 AM - 10:30 AM											
OC-1-1-1 (Auditorium)	OC-1-1-2 (Room 6)	OC-1-2 (Room 2)	OC-1-3 (Room 1)	OC-1-4 (Room 3)	OC-1-5 (Room 4)	03:00 PM - 04:00 PM					
43 Deoxydehydration of	199 Water tolerant alumi-	397 Phosphine-free Pin-		292 New Eco-friendly	84 SUSSOL -	OC-3-1-2 (Room6)	OC-3-2-2 (Room 1)	OC-3-2-3 (Room 2)	OC-3-4 (Room 3)	OC-3-5 (Room 4)	OC-3-8 (Room 5)
 small natural polyhy- droxylated molecules: a useful tool to obtain volatile hydrocarbons from natural re- newable oxygenated compounds Nicola D'ALESSANDRO 393 Base-free conversion of glycerol to methyl lactate using a mul- tifunctional catalytic system consisting of Au-Pd nanoparticles on carbon nanotubes and Sn-MCM-41-XS Zhenchen TANG 464 Solketal: a key molecule in glycerol chemistry? Vadim SAMOILOV 466 Synthesis of C4 diacid from biomass-based furanics derivatives Gerald ENDERLIN 	na based heteroge- neous catalyst for biomass conversion Amandine CABIAC 242 Ligand-stabilized homogeneous Mo catalysts for deoxydehydration reactions Maxime STALPAERT 246 Phosphonium ionic liquids as catalytic solvents for the bio- based production of alkenes, dienes and acrylic acid Maxime STALPAERT 430 Selective Oxidation of Alkyl Aromatics using Molecular Oxygen by Supported Silver Nanoparticles with Visible Light Zhe LIU	 cer Cobalt Catalyst Precursors for the Selective Hydroge- nation of Olefins Andrea DELL'ACOUA 631 Photo-reforming of glycerol over the microemulsion-me- diated TiO2 catalysts Valeriia MASLOVA 713 Benzylic C-H Arylation with Visible-Light/Nickel Catalysis: The Dual Role of Benzophe- none Patricia KRACH 1055 Silver nanodots an- chored on functional cellulose nanocrys- tals as sustainable catalysts and antimicrobial agents for environmental applications Feiping ZHAO 	479 Scaling Up Subcritical Water Extraction of Feruloylated Arabinoxylans from Wheat Bran Reskandi RUDJITO	Surfactant to Gene- rate Thick and Long Lasting Foam Estelle ILLOUS 45 Collaborative projects to develop sustainable ingre- dients for food and cosmetic industry Gislene DA SILVA 657 Biobased polymer latexes produced by free radical emulsion polymerization of eugenol derivatives Samantha MOLINA-GUTIERREZ 691 Engineering he- micellulose-lignin complexes' extrac- tion for obtaining emulsion stabilizing hydrocolloids Henrik GRENMAN	 Sustainable Solvents Selection and Subs- titution Software Hannes SELS 379 Insights into the So- lid-Liquid Equilibria of Eutectic and Deep Eutectic Mixtures Mónia A. R. MARTINS 444 Extraction and characterization of bioactive lipids from microalgae using Supercritical CO2 and its commercial applications NIDHI HANS 681 Modelling the physical chemistry of the interactions between organosolv mixed solvents and lignocellulose com- ponents Francesco DI RENZO 	 337 Organocatalytic cleavage of fatty derivatives to esters Thomas DE DIOS MIGUEL 344 Non-isocyanate biobased polyurethanes through reactive extrusion Fiona MAGLIOZZI 600 Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and co-polymerisation of bisguaiacol F (BGF) isomers SELS Bert 726 Bioplasticizers based on modified plant oils Anna CHEREPANOVA 	 474 Cellulose conversion to lactic acid over HPAs supported catalysts Asimina MARIANOU 555 Tuning the Acid Strength and Surface Polarity of Silica-Sup- ported Sulfonic Acid Catalysts Antony FERNANDES 684 Continuous esteri- fication in organic solvents as a step in the valorization of CO2. Johann-Kilian SCHNOOR 728 Rational Design of Lewis Superacids Leading to an Unpre- cedented Ti (III) Trifi- mide Catalysts for the Direct Amination of Alcohols Marc PERA-TITUS 	 53 Reduction of esters and alpha, beta-un- saturated carbonyl compounds to alco- hols using Fe or Ru MACHO-BH catalysts and ethanol as a source of hydrogen Sarah KIRCHHECKER 129 Direct Liquid-Phase Amination of Phenols into Anilines and Cyclohexylamines Thomas CUYPERS 206 Kinetic analysis of reduction of 4-Ni- trophenol by (water soluble) Palladium Nanoparticles Studied by a Lang- muir-Hinshelwood mechanism. Does we compare apples and oranges ? Anas IBEN AYAD 611 Catalytic conver- sion of glycerol into 	 367 Biobased phase transition plasticizers for long term applications in polylactic acid Antoine GALLOS 478 Biobased thermoset resins: versatility and new horizons offered by furanics Nathanael GUIGO 1126 Low temperature VOC catalytic total oxidation by O3 TOUATI HOUCINE 683 Build-to-Spec. Bio-based Building-Blocks for Thermosets Materials Samuel MALBURET 	 A General Palla- dium Catalyst for Cross-Coupling Reactions in Deep Eutectic Solvents Beatriz SAAVEDRA Combination of me- tal- and bio-cataly- zed organic reactions in Deep Eutectic Solvents and water Joaquin GARCIA UMR7314 Materials for Energy by Computational Design: exploring organic electrodes toward next-genera- tion batteries Christine FRAYRET Deep eutectic solvents (DES)- based materials for the integration of desulfurization and denitrogenation processes of fuels 	 222 Synthesis and Characterization of ESTOLINE: Bringing Innova- tion to formulators through a smart combination of Green Chemistry and Functionalities Philippe MARECHAL 287 Solvent: Constraint for Sustainable development in Pharmaceutical Industry Sylvie DHULUT 692 Finding the needle in the haystack - A software-based approach to data-driven com- pound design Dora BARNA 827 Green Production Technology of Cyclohexanone oxime
		11:00 AM - 11:30 AI	M					solketal with Ga-si- licate nanoparticles		Filipa LIMA	Bin SUN
193 Catalytic upgrade of biobased chemicals	455 Selective extraction of	KN-1-1 (Auditorium	n) KN-1-2 (Room	12) K	N-1-3 (Room 5)			prepared by aerosol process			
using microfluidic devices	diterpenes from the macroalga	1141 Architectural contro			New sustainable			Alvise VIVIAN			
Julien ESTAGER	Bifurcaria bifurcata using high-pressure	of isosorbide-based polyethers via	cellulose a	nd chitin	surfactants for innovative cosmetic						
274 Mechanochemical synthesis of	assisted extraction Sonia SANTOS	ring-opening polymerization Theresa M. REINEK	Atsushi FU	KUOKA	products Boris ESTRINE	04:30 PM - 05:30 PM					
æhydrazones and triazoles and evaluation	703 Synthesis of a tetra- saccharide derivative	meresa M. KEINEN				OC-4-1-1 (Auditorium)	OC-4-1-2 (Room 6)	OC-4-2-1 (Room 2)	OC-4-2-2 (Room 3)	OC-4-1 (Room 1)	OC-4-5 (Room 4)
of their biological activities Lori GONNET	related to the cell wall polysaccharide of B. anthracis utilizing one-pot glycosylation reactions Rina GHOSH	KN-1-4 (Room 4) 1145 Solvent-free Appro to Nanoparticles Synthesis and Poly Functionalization Audrey H. MOORES	rmer essential for cal transition Régis RÉAU	l molecules 1096 the ecologi-	N-1-6 (Room 1) Chemical Production of Chemicals and Nutrients from Renewable Resources Ning YAN	94 Influence of synthesis method of ZrO2-sup- ported Au-Pt catalysts in aerobic base-free oxidation of glucose towards glucaric acid Natalia POTRZEBOWSKA	 346 PHOTO-ACTIVATED NANOCATALYSTS FOR THE SELECTIVE MODIFICATION OF FREE CARBOHY- DRATES Gwladys POURCEAU 411 Production of sucrose 	 424 Eco-friendly synthesis of metallic nanoparticles and catalytic properties in aqueous media. Erwann GUÉNIN 465 Metal binding and catalysis: exploring 	 93 Achiral Reduction of Carbonyl Derivatives Jacques LE PAIH 170 Covalent Organic Frameworks - Highly versatile and me- tal-free adsorbents and catalysts. 	 153 Selective leaching of lead and zinc over iron from jarosite using methanesulfo- nic acid Thupten PALDEN 186 Recovery of va- luable metals from 	160 Rapid desorption of CO2 from deep eutectic solvents at lower temperature: An alternative tech- nology with industrial potential CHANDRAKANT MUKESH
11:30 AM - 12:30 PM						176 Extraction and in situ saccharification and	esters through so- lid-liquid transesteri-	the role of methio- nine in artificial	Pascal VAN DER VOORT	NdFeB magnets by mechanochemically	445 Extraction of high
OC-2-1-1 (Auditorium)	OC-2-1-2 (Room 2)	OC-2-2 (Room 1)	OC-2-3 (Room 3)	OC-2-4 (Room 4)	OC-2-7 (Room 5)	fermentation of xylans for the production of	fication Tapio SALMI	metalloenzymes Hasan Tanvir IMAM	270 Cobalt(II) catalysts	assisted ferric sulfate leaching	value lipophilic compounds from
catalytic Conversion of Biogenic 3-Hydroxy Decanoic Acid into Green Fuels Joel B. MENSAH	 361 Sustainable Valorization of Cellulosic Biomass-Derived -Valerolactone to -MethyleneVa- lerolactone over Hierarchical Superior Basic Zeolite via Tan- dem Flow Process MAJD AL-NAJI 366 The sustainable syn- thesis of biosourced terpenoid-based (meth)acrylates using the CHEM21 green metrics toolkit Martijn DROESBEKE 404 From Carboxylic 	 211 Insight into the mechanism of base free furfural oxidation using Raman spectroscopy Joëlle THURIOT 488 Semi-continuous two step catalytic process for the production of 2-methylpiperazine by using glycerol as starting raw material DOMINE Marcelo E. 735 Microwave-assisted 2,5-furandicarboxy-lic acid production 	 334 Sequential valorization of bioactive polymers from mushroom farming by-products Amparo JIMENEZ 363 Niobium oxide prepared through a novel supercritical CO2-assisted method as versatile heterogeneous catalyst for the synthesis of 5-HIMF and azoxybenzene Yehan TAO 368 Boosting the ruthenium catalyzed bio-ethanol 	 58 Current Development in biobased polyester : PRIC range Guillaume CHOLLET 75 Synthesis of bio-based amine monomers for epoxy curing Anne-Sophie MORA 120 Synthesis and enzymatic poly- condensation of new diol -diamide monomers from microalgaes Meimoun JULIE 	 processes using sponge-like ionic liquids and supercritical carbon dioxide Pedro LOZANO 215 Epoxidation of Limonene Serge KALIAGUINE 439 New Strategies for Acid-Acid-Catalyzed Reactions with Au- to-Tandem Catalysis Yanlong GU 545 Acid Scavengers 	xylitol in deep eutectic solvents Eduarda S. MORAIS 224 SELECTIVE OXIDA- TION OF SUGARS AND ALCOHOLS USING GOLD BASED CATALYSTS UIF PRÜSSE 587 Recent advances in production of succinic acid from glucose using Nb-based zeo- lites nanocomposites Natalia CANDU OC-4-6 (Room 5)	 448 OXIDATION OF GLUCOSE TO GLU- CARIC ACID USING SUPPORTED GOLD CATALYSTS Eleonora MONTI 787 Valorization of Su- garcane Bagasse to a Platform Chemical Levulinic Acid cata- lysed by 1- Butyl - 2. 3 - Dimethylimidazo- lium Tetrafluorobo- rate IBMMim] (BF4) Lethiwe MTHEMBU 	 476 Organocatalyzed synthesis of cyclic carbonates from CO2 and renewables Thomas WERNER 602 Additive Free Isomerization of Allytic Alcohols to Ketones with 1st Row Transition Metal PNP Pincer Catalysts Sergey TIN 	applied to the hydro- silylation of esters for the sustainable syn- thesis of aldehydes and alcohols Francine AGBOS- SOU-NIEDERCORN 673 Creation of Highly Active Water-Splitting Photocatalyst by Controlling Cocatalyst Yuichi NEGISHI	 Steff VAN LOY 470 Arsenic Pollutants Removal from Water by Sulphur Species Functionalized Mg-Al Layered Double Hydroxide Zhe LIU 480 Potential of wheat bran hemicelluloses as soft multifunctio- nal materials Secil YILMAZ TURAN 	 biomass by-products using natural deep eutectic solvents Nuno SILVA 449 Ionic liquids as alter- native solvents under the scope of biomass valorization Leonardo Mendes 786 New eutectic me- diums for biomass processing Svitlana FILONENKO
 317 Replacement of CuCr catalysts by environmentally benign CuZn cata- lysts - effect of the chemical composition and pre-treatment on hydrogenolysis performance Oleg KIKHTYANIN 358 Bio4Products: Creating sustainable resources for proces- sing industry Hans HEERES 	 404 From Carboxylic Acids to Biopyrro- lidones - Biomass for Sustainable Polymer Production Moritz HAUS 406 Levulinic acid esters production via hete- rogeneous catalysis: from batch to conti- nuous technology SALMI Tapio 	lic acid production using ruthenium on activated carbon Deyang ZHAO 736 Catalytic upgrading of furfuryl alcohol to alkyl levulinates under batch microwave irradiation Christophe LEN	 bio-etrianot homologation with a redox active co-catalyst Rita MAZZONI 416 Sn-Al-containing Beta and USY zeolites for the one pot transfor- mation of glucose into methyl lactate Jose IGLESIAS 	348 Hop for Green Polymer Materials Etienne GRAU	545 Active and Efficient Cleavage of Aryl Alkyl Ethers by Lewis Acids Dayong SANG	 369 Ethanol-to-butadiene: physicochemical pro- perties of highly active Zn-Ta catalysts Guillaume POMALAZA 494 Eco-design tech- nology to develop a natural interpenetrating biopolymer network (IBPN) with outstanding properties Laurie VERZEAUX 	 621 Mussels inspired bio-polymer for H2 production at room temperature Laura BIRBA 732 Catalyst-free reduc- tion of nitrobenzene to aniline using ligno- cellulosic biomass Christophe LEN 				

Biorefinery Schemes towards Platform Chemicals: heterogeneous organocatalysis and hyperpolar solvent media

05:30 PM - 06:30 PM							
OC-5-1-1 (Auditorium)	OC-5-2-1 (Room 5)	OC-5-3 (Room 2)	OC-5-4 (Room 1)	OC-5-5 (Room 3)	OC-5-7 (Room 4)		
462 Hydrogenation of aqueous sugar solu- tions from renewable resources: Selection of a suitable reactor concept Carina HEISIG	398 Bimetallic catalysts for the conversion of sorbitol into hydrocarbons by aqueous phase hy- drodeoxygenation Aurelien FOUQUET	475 Acidic aqueous biphasic systems: a new paradigm for the 'one-pot' hydrome- tallurgical recovery of critical metals Nicolas SCHAEFFER	 423 ATRP catalyst removal and ligand recycling using carbon dioxide switchable materials Michael CUNNINGHAM 501 Avant-garde process 	612 What can enzyme and supercritical CO2 bring to the synthesis of biodegradable star polymers? Patrick LACROIX-DESMAZES	190 pH-triggered aqueous biphasic systems as integrated plat- forms in catalytic processes ANA M. FERREIRA		
504 Beyond tin-containing zeolites – New opportunities in catalytic carbohydrate conversion by Tin-Organic Frameworks Marcus ROSE	 414 Selective hydrogenation using bimetallic RhCo@SILP Simon RENGSHAUSEN 419 Hydrogenation Reactions Catalyzed by Bidentate Manganese 	 502 Ionic liquids solutions for the recovery of valuable metals from acid mine drainage waters Helena PASSOS 693 Combining metal recovery and micel- log other is with 	 501 Availing and e process intensification in the production of epoxidized fatty acids and fatty acid esters Adriana FREITES AGUILERA 557 TERPENES-BASED (METH)ACRYLIC 	622 Chemical valorization of viticultural waste in Savoie Mont Blanc (France): high-value compounds extrac- tion as an alternative to open-air burning practice Marion	249 Selective aqueous phase hydroge- nation of succinic acid to 1,4-butane- diol: MOx-Pd (M = Re, Mo) supported catalysts Madjid OUALI		
 698 Sugar derived platform molecules for the development of bio- sourced solvents and polymer Bruno ANDRIOLETTI 705 One-Step Synthesis of 	 (I) Complexes Duo WEI 432 One-Pot Lignocellulosic Biomass Conversion into Selective Chemicals over Bimetallic 	lar catalysis with surfactants Damien BOURGEOIS 1107 Efficiency of sulfonated reduced graphene oxide in the glycerol	POLYMERS Laurent BILLON 662 Photolatent organic catalysts for delayed ring opening polyme- rization Patrick	260 Deep eutectic solvents comprising active pharmaceuti- cal ingredients- an- tibiotic-based liquid formulations for drug delivery	497 Treatment of methylene blue by mesoporous Fe/SiO2 prepared from rice husk pyrolytic residues Changwei HU		
N-Heterocyclic Compounds from Carbohydrates over Tungsten-Based Catalysts Xi CHEN	Bimetallic CuRu-based Catalyst DEEPAK VERMA	etherification with tert-butyl alcohol Yannick POUILLOUX	LACROIX-DESMAZES	 Sónia PEDRO 1050 Integrated process for the extraction and preservation of lac- case from Trametes versicolor growth media using aqueous biphasic systems Marguerita ROSA 	727 Pickering Inter- facial Catalysis for the Oxidative Cleavage of Cyclohexene: A Novel and Green Approach for the Synthesis of Dicar- boxylic Acids Marc PERA-TITUS		
OC-5-9 (Room 6)							

I I

I

200	Trusting the Intangible: ecosystems monitoring and in silico techniques Ana S. MOURA	453	How to simplify the assessment of life cycle impacts for new organic reactions? Development of a tool and application to a catalytic reaction.
744	Application of com- putational methods to		Julien GICQUIAUD
	predict aquatic toxicity of pesticides Selene RAMER	733	Sustainability analysis of an algae-based value chain in Nor- th-West Europe ORMEROD Dominic

06:30 PM - 08:00 PM

POSTER SESSIONS

SCIENTIFIC PROGRAM Tuesday, May 14th

1

Partners & Sponsors